
Please visit website: http://cxyroad.com

// Output Marshal:
{"ID":1,"Name":"Bruce"}

// Output Unmarshal:
{ID:1 Name:Bruce age:0}

```
 
这里 `age` 被设为了私有变量，于是序列化后的 JSON 串中没有 `age` 这个字
段了。同理，从一个 JSON 字符串反序列化为 `Person` 后，也无法正确读取
到 `age` 的值。
 
 
原因也很简单，如果我们深入 `Marshal` 的源码就能发现，它的底层实际上使
用了反射对结构体对象进行动态解析：
 
 
 
```
// .../src/encoding/json/encode.go

func (e *encodeState) marshal(v any, opts encOpts) (err error) {
// ...skip
e.reflectValue(reflect.ValueOf(v), opts)
return nil
}

```
 
而 Golang 从语言设计的层面上禁止反射访问结构体的私有成员，所以这种反
射解析自然是失败的，反序列化同理。
 
 
2.2 少用 map
----------
 
 
前文里提到，JSON 不仅能操作结构体，还能操作 slice、map 等类型的数据
。slice 比较特殊，但 map 和结构体表现在 JSON 格式下其实是一样的：
 
 
 
```


{
"ID": 1,
"Name": "Bruce"
}

```
 
这种情况下，除非有特情况或需求，否则，少用 map。因为 map 会带来额外
的开销，额外的代码量，以及额外的维护成本。
 
 
为什么？
 
 
首先，像上面的 Person 例子，由于 ID 和 Name 是不同类型，因此我们如果
要用 map 反序列化这个 JSON 数据，就只能申明一个 `map[string]any` 类型
的 map。`any`，也就是 `interface{}` ，就意味着我们如果要单独使用 Name
或 ID 时，需要用类型断言来转换类型：
 
 
 
```
var m map[string]any
// ...反序列化 JSON 数据，代码忽略...
// 获取成员
name, ok := m["Name"].(string)

```
 
类型断言本身就是一个额外的步骤，为防止 panic，我们还需要判断第二个参
数 ok，这无疑增加了开发工作量以及代码负担。
 
 
另外，map 本身对数据就是无约束的。结构体中我们能够预先定义各成员字段
以及类型，但 map 不行。这就意味着，我们只能通过文档或注释或代码本身来
理解这个 map 里到底装了些什么东西。并且，结构体可以限制 JSON 数据的
key 和 value 类型不被乱改，而 map 同样无法约束 JSON 的变更，只能通过
业务逻辑代码来检测。这其中的工作量和后期维护成本，想想就知道会有多少
。
 
 
之所以我会提及这个坑，是因为我在使用 Go 开发之前，主语言是 Python。而
Python 嘛，你们懂的，没有结构体，只有 dict（map）来加载 JSON 数据。
在我刚接触 Go 时，我也习惯性用 map 来与 JSON 交互。但因为 Go 是静态
类型，必须要显式转换类型（类型断言），不能像 Python 一样直接用，就一
度让我很头疼。
 
 



总之，少用，或尽量不要用 map 来操作 JSON。
 
 
2.3 小心结构体组合
-----------
 
 
Go 虽然面向对象，但没有 `class` ，只有结构体，并且结构体没有继承。因此
Go 采用了一种组合的方式来复用不同的结构体。很多时候，这种组合给我们带
来了极大的便利，我们可以像操作结构体自己的成员一样去操作组合的其他结
构体成员，就像这样：
 
 
 
```
type Person struct {
ID uint
Name string
address
}

type address struct {
Code int
Street string
}

func (a address) PrintAddr() {
fmt.Println(a.Code, a.Street)
}

func Group() {
p := Person{
ID: 1,
Name: "Bruce",
address: address{
Code: 100,
Street: "Main St",
},
}
// 用 p 直接访问 Address 的成员和方法
fmt.Println(p.Code, p.Street)
p.PrintAddr()
}

// Output
100 Main St
100 Main St


```
 
很方便对吧，我也这么觉得。但当我们将组合融入到 JSON 的使用当中时，这
里会有一个小坑需要注意。来看下面这段代码：
 
 
 me:Jim ChildrenCnt:0}
 
```

我们在 `Person` 结构体中添加了一个 `ChildrenCnt` 字段，用于统计该人物的
子女数量。由于零值的存在，当 `p` 加载的 JSON 数据里没有 `ChildrenCnt`
数据时，该字段被赋予 0。此时就产生了误解：**我们无法将这种数据缺失的
对象，与子女数确实为 0 的对象区分开**。如例子里的 Bruce 和 Jim，一个是
数据缺失导致的子女数为 0，另一个是本来就为 0。而实际上 Bruce 的子女数
量应该是“未知“，我们如果真当作 0 处理，在业务上可能就会产生问题。

这样的混淆在一些对数据要求严格的场景下是非常致命的。那么有没有什么办
法能避免这种零值的干扰？还真有，就是上一节最后遗留的指针的使用场景。

我们把 `Person` 的 `ChildrenCnt` 类型改为 `*int` ，看看会发生什么：


```
type Person struct {
Name        string
ChildrenCnt *int
}
 
// Output
{Name:Bruce ChildrenCnt:<nil>}
{Name:Jim ChildrenCnt:0xc0000124c8}
 
```

区别产生了。Bruce 没有数据，所以 `ChildrenCnt` 是个 nil，而 Jim 则是一个
非空指针。此时就能明确地知晓，Bruce 的子女数量是未知了。

本质上这种方式还是利用了零值，指针的零值。这也算是用魔法打败魔法吧
（大笑）。

2.7 标签的坑

终于讲到了标签。标签也是 Golang 中一个非常重要的特性，并且常与 JSON
相伴。而且其实用过 Go 标签的读者们应该知道，标签其实是一个非常灵活、
好用的东西。那这样的好特性，在使用上会有什么坑要注意呢？

一个是名称问题。Tag 可以指定 JSON 数据中字段的名称显示，这点很灵活且
实用，但它同时也容易出错，并且一定程度上对程序员本身增加了一些职业素
养的要求。

譬如某个程序员有意或无意地定义了这么一个结构体：


```
type PersonWrong struct {
FirstName string `json:"last_name"`
LastName  string `json:"first_name"`
}
 
```

Tag 对调了 FirstName 和 LastName。遇到这样的代码你会不会想把这个程序
员打一顿？别说，我还真在生产环境的代码中遇到过类似的。当然那次是无意
的，属于某次代码变更时的失误。然而真遇到这种情况的时候，这样的 bug 通
常也不太容易定位。主要是因为，这谁特么能想到？

反正各位读者千万别这么干，写的时候还是得多加留意。

另一个问题则与 `omitempty` + 零值的组合有关，看代码：


```
type Person struct {
Name        string `json:"person_name"`
ChildrenCnt int    `json:"cnt,omitempty"`
}
 
func TagMarshal() {
p := Person{
Name:        "Bruce",
ChildrenCnt: 0,
}



output, _ := json.MarshalIndent(p, "", "  ")
println(string(output))
}
 
// Output
{
  "person_name": "Bruce"
}
 
```

看出问题了么？我们在新建结构体对象 `p` 时，为 `ChildrenCnt` 赋值为 0。而
因为 `omitempty` 标签的存在，**它使得 JSON 被序列化或反序列化时，忽略
空（empty）值。在序列化时的表现就是，输出的 JSON 数据里不包含
`ChildrenCnt`，看上去就像是没有这个数据。什么是空值？对了，就是零值
**。

于是熟悉的混淆又产生了：Bruce 的子女数量为 0，并非没有数据。而输的
JSON 则表示 Bruce 的子女数据不存在。

反序列化存在同样的问题，就不举例了。

这种 `omitempty` 的问题又该怎么解决呢？由于本质上还是零值惹得祸，所以
，用指针。

3 总结
====

本文列举了 7 个使用 `encoding/json` 库时容易犯的错，这些问题我自己在工
作中基本上都遇到过。如果你还没有遭遇过它们，那么恭喜你！同时也提醒你
今后要小心对待 JSON；如果你也遇到过这些问题，并且为其感到困惑，希望
这篇文章能够帮助到你。

本人技术有限，文章若有任何错误或不清晰的地方，还请各位不吝之处，感谢
！

 原文链接: https://juejin.cn/post/7367658043440726068

