
Please visit website: http://cxyroad.com

dd47b3f7e4947beb4c0edb1f303538f~tplv-k3u1fbpfcp-jj-
mark:3024:0:0:0:q75.awebp#?w=477&h=281&s=20040&e=png&b=2c2c2
c)

4.2 数据库配置 sqlalchemy

对于数据库的配置，可以通过配置文件的方式来设置，具体的配置如下图所示
：


```
# 配置方式
app.config["SQLALCHEMY_TRACK_MODIFICATIONS"] = True
# 配置文件的方式
app.config.from_object(config)
 
```

![1717944528756.png](https://p1-juejin.byteimg.com/tos-cn-i-
k3u1fbpfcp/ef8ac587d1ca4b9a8ccd8db451f6dd64~tplv-k3u1fbpfcp-jj-
mark:3024:0:0:0:q75.awebp#?w=946&h=639&s=59068&e=png&b=2b2b2
b)

对于数据库的操作，可以使用 pymysql 的方式来操作数据库，对于脚本来说是
合适的，但是对于 web 开发来说，还是需要采用面向对象的方式，这里使用的
orm 框架是 SQLAlchemy , 对于 django 框架来说也是同样的。
![1717944768099.png](https://p3-juejin.byteimg.com/tos-cn-i-
k3u1fbpfcp/ed62422936e44f32808b0fc3f9b3f06c~tplv-k3u1fbpfcp-jj-
mark:3024:0:0:0:q75.awebp#?w=1517&h=460&s=104549&e=png&b=2c2
c2c)

数据库实体类需要集成db.Model, 在实体类中可以设置数据库的表名称，字段
名称，类型，默认值，注释，主键，索引，约束键等信息。数据库采用的是下
划线的命名方式，对应的实体是驼峰命名。


```
class User(db.Model):
 



    __tablename__ = "tb_user"
    id = db.Column(db.Integer, primary_key=True, autoincrement=True,
comment='主键')
    userId = db.Column("user_id", db.String(32), default="", unique=True,
comment='用户Id')
    username = db.Column(db.String(32), default="", comment='用户')
    email = db.Column(db.String(32), default="", nullable=False,
comment='邮箱')
    cellphone = db.Column(db.String(32), default="", comment='手机号')
    status = db.Column(db.String(32), default="",  comment='状态')
    seq = db.Column(db.Integer, default="", comment='seq')
    createTime = db.Column("create_time", db.DateTime,
default=datetime.now, comment='创建时间')
    updateTime = db.Column("update_time", db.DateTime,
default=datetime.now, comment='更新时间')
 
```

4.3 热加载

在开发模式下，需要开启热加载的模式，方便开发的调试，通过以下的方式可
以实现热加载。

![1717948720300.png](https://p3-juejin.byteimg.com/tos-cn-i-
k3u1fbpfcp/b705c8aa57024860a04f9edbe3fea325~tplv-k3u1fbpfcp-jj-
mark:3024:0:0:0:q75.awebp#?w=501&h=214&s=14881&e=png&b=2c2c2
c)

5 数据库操作

数据库的操作是 t=db_config['port'], charset=db_config['charset'])
 return __pool.connection()

 # 数据插入\更新\删除sql
 def op_update(self, sql, param):
 print('op_insert', sql, param)
 insert_num = self.cur.execute(sql, param)
 # commit 请求
 self.coon.commit()
 return insert_num

 # 数据查询
 def op_query(self, sql, parm):
 print('op_select', sql, parm)

 self.cur.execute(sql, parm) # 执行sql
 select_res = self.cur.fetchall() # 返回结果为字典
 return select_res

 # 批量更新数据
 def op_update_list(self, list):
 sum = 0
 try:
 for tuple in list:
 sql, parm = tuple
 insert_num = self.cur.execute(sql, parm)
 if (insert_num == 0):
 self.coon.rollback()
 break
 sum += insert_num
 self.coon.commit()
 except:
 print('事务回滚')
 self.coon.rollback()
 return sum
 # 释放资源

 # 释放资源
 def dispose(self):
 self.coon.close()
 self.cur.close()
if __name__ == '__main__':
 # 数据库连接配置
 db_config = {
 "host": 'localhost',
 "user": 'root',
 "passwd": '123456',
 "db": 'account',
 "port": 3306,
 "charset": 'utf8mb4'
 }

 db = DbPool(db_config)
 dt_list = db.op_query("select * from user where userid > %s order by
userid desc limit 1", (23))
 for nd in dt_list:
 print(nd)

 res = db.op_update("update user set register_date = %s where userid
> %s and userid < %s", ("2024-04-19 16:42:50", 17702, 17705))
 print("res is ", res)

```



 
#### 8 总结
 
 
在本文中详细介绍了 `flask` 框架搭建 `web` 项目的全部流程以及注意事项，相
对而言`flask`比较简单容易上手，主要是前端的配置和数据库的配置以及增删
改查等操作。本文中所涉及的代码已经上传至 `github`, 欢迎交流学习。项目地
址 [flask\_web](http://cxyroad.com/
"https://gitee.com/xieyue86/flask_web.git")。
 
 原文链接: https://juejin.cn/post/7382525876032552998
 


